蓄热材料蓄热材料的发展

发布日期:2022-04-11 09:24:01 来源:风机百科

 

相变蓄热材料具有蓄放热过程近似等温、过程容易控制等优点是当今蓄热材料的研究热点。1992年,法国首次研制出用于储存能量的小球,把球态可变盐衬装在聚合物小球中,然后把小球盛装在可变体积的容器里,蓄热量为同样体积水的10倍。

1998年,美国对铵矾和硝酸铵二元相变材料体系进行了研究,并将其应用于太阳能热水器。我国在19世纪80年代初开始开展相变蓄热材料的研究,早期集中于相变蓄热材料中的无机水合盐类。由于绝大多数无机水合盐都具有腐蚀性,相变过程存在过冷和相分离等缺点,而有机物相变材料则热导率低,相变过程的传热性能差。为了克服单一无机物或有机物相变蓄热材料存在的缺点,许多研究者开始开发复合相变蓄热材料,如Udidn等以石蜡为相变材料、阿拉伯树脂和明胶为胶囊体材料制备出胶囊型复合无机相变材料,实验表明,胶囊化石蜡经过1000次热循环,仍能维持其结构形状和储热密度不变,胶囊化技术有效地解决了无机相变材料的泄漏、相分离以及腐蚀性问题。

Xavier制备出有机复合相变材料,将有机物相变蓄热材料石蜡吸附在具有多孔结构的膨胀石墨内,明显提高了蓄热材料的热导率,如纯石蜡的热导率仅为0.24W/m,而复合石墨后的热导率提高到4一7W/m。

近年来,有机/无机纳米复合材料在聚合物改性以及研制新型蓄热材料方面得到了广泛应用。张正国等将有机/无机纳米复合材料扩展到蓄热材料领域,提出将有机相变材料与无机物进行纳米复合的方案,制备出硬脂酸/膨润土纳米复合相变蓄热材料,复合材料的相变潜热值基本不变而储放热速率明显提高,且经1500次循环试验后复合相变材料仍具有很好的结构和性能稳定性。有机/无机复合相变蓄热材料的制备,不仅可利用无机物的高热导率来提高有机物相变蓄热材料的导热性能,而且纳米复合技术将有机相变储热材料和无机载体充分结合起来,提高复合相变蓄热材料的蓄热密度和循环稳定性。

在沸石、硅胶等多孔材料对水发生物理吸附的过程中,伴随着大量的物理吸附热,可以用于热量的储存和利用。Close等首先利用开式吸附床的吸附/解吸循环,以沸石为吸附材料、湿蒸汽(水)为载体实现了低温热储存。吸附蓄热材料克服了传统蓄热方法的缺陷,在蓄热过程中无热量损失,为蓄热技术开辟了新天地。

由于分子筛作为吸附蓄热材料时对水的吸附属于物理吸附,吸附平衡量和吸附循环量不高,因此有研究者利用沸石分子筛规整而稳定的孔隙结构,把对水吸附容量比较高的氯化钙填充进去,从而制备出既具有高吸附蓄热容量又具有稳定吸附蓄热性能的复合吸附蓄热材料。朱冬生等以分子筛为基体,使氯化钙填充进人分子筛制备出吸附蓄热复合材料,实验发现复一合吸附剂的最大吸附量可达0. 55 kg/kg,,用于蓄热时其蓄热密度达到1000 kJ/kg以上,与显热蓄热和相变潜热蓄热材料相比在蓄热能力上具有明显的优势。

除分子筛吸附蓄热材料的应用外,硅胶等其他多孔材料也被用于吸附蓄热技术。如Aristov将CaCl2植人中孔硅胶内部,崔群等发现在复合吸附剂的制备过程中还需加入扩孔剂以增加孔容和孔径,才可改善复合吸附材料的吸附性能,以使其吸附量显着提高。

在进一步提高复合吸附蓄热材料的蓄热能力和循环方面,MrowierBialon用四乙氧基硅烷制成复合多孔材料,1kg该吸附剂的水蒸气吸附量超过1kg,而且经过50次循环实验,该复合吸附材料的吸附性能无明显改变。 这种由分子筛等多孔材料和吸湿性无机盐复合而制得的吸附蓄热材料,一方面使无机盐的化学吸附蓄热循环过程发生在多孔材料的孔道内,改善了吸附蓄热过程的传热和传质性能;另一方面,多孔材料对吸附质也具有吸附作用,不仅提高了复合吸附材料的总吸附量和蓄热密度,而且物理吸附作为化学吸附的前驱态还促进了无机盐的化学吸附。

相关文章